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Abstract
The solution of a general time fractional wave equation for a vibrating string
is obtained in terms of the Mittag–Leffler-type functions and complete set of
eigenfunctions of the Sturm–Liouville problem. The time fractional derivative
used is taken in the Caputo sense, and the method of separation of variables and
the Laplace transform method are used to solve the equation. Some results for
special cases of the initial and boundary conditions are obtained and it is shown
that the corresponding solutions of the integer order equations are special cases
of those of time fractional equations. The proposed general equation may
be used for modeling different processes in complex or viscoelastic media,
disordered materials, etc.

PACS numbers: 45.10.Hj, 02.30.Gp

1. Introduction

In this paper we investigate the general time fractional partial differential equation of the form

r(x)Dα
∗ u(x, t) = ∂

∂x

[
p(x)

∂u(x, t)

∂x

]
− q(x)u(x, t) + f (x, t), t > 0, 0 � x � l

(1)[
b1

∂u(x, t)

∂x
+ a1u(x, t)

] ∣∣∣∣
x=0

= h1(t),

[
b2

∂u(x, t)

∂x
+ a2u(x, t)

] ∣∣∣∣
x=l

= h2(t) (2)

∂ku(x, t)

∂tk

∣∣∣∣
t=0+

= gk(x), k = 0, 1, . . . , m − 1, m − 1 < α � m, (3)
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where Dα
∗ is the time fractional differential operator in the Caputo sense (α > 0), p(x) > 0,

r(x) > 0 and q(x) are given continuous functions in [0, l], f (x, t), h1(t), h2(t) and gk(x)

are given sufficiently well-behaved functions, and a1, a2, b1 and b2 are constants. The time
fractional differential operator of order γ > 0 in the Caputo sense is the operator D

γ
∗ f (t) such

that [3]

Dγ
∗ f (t) =

⎧⎪⎪⎨⎪⎪⎩
1

�(m − γ )

∫ t

0

f (m)(τ )

(t − τ)γ +1−m
dτ if m − 1 < γ < m,

dmf (t)

dtm
if γ = m.

(4)

The time fractional differential equation (1), as well as the boundary conditions (2) and
initial conditions (3), is very general, and many problems that are already studied are special
cases of it. So their solutions can be obtained by changing given functions or constants in the
solution of equation (1).

The solution of this problem will be obtained in a bounded domain x ∈ [0, l] and in the
space of summable Lebesgue integrable functions

L(0,∞) =
{
f : ‖f ‖1 =

∫ ∞

0
|f (t)| dt < ∞

}
. (5)

In a number of papers many authors have investigated time fractional relaxation and
oscillation processes as well as time fractional diffusive and wave processes [12, 20–22]. The
fractional Brownian motion, fractional Langevin and fractional Fokker–Planck equations have
attracted attention in the last few years [9–11, 13, 18, 23]. The fractional diffusion-wave
equation was introduced in physics to describe the diffusion process in media with fractional
geometry [27], the fractional diffusive waves in viscoelastic solids which exhibit a power-law
creep [19], the anomalous diffusion and relaxation which are found in diverse physical systems
such as charge transport in disordered semiconductors and quantum dots, protein relaxation
dynamics, electrochemistry, biomedicine, etc [5, 8, 24, 34, 37]. In many papers the properties
of the fractional integral and differential operators as well as the Mittag–Leffler functions are
investigated [14, 31] and the results are used for modeling different physical phenomena.

This paper is organized as follows. In section 2 we present the mathematical background
related to the fractional differentiation and integration, definitions of the Mittag–Leffler
functions and some basic properties. In section 3 we present the technique of solving
equation (1) with the boundary conditions (2) and initial conditions (3) by using the method
of separation of variables and the Laplace transform method, and several special cases of
equation (1) are considered. The conclusion is provided in section 4.

2. Mathematical background

2.1. The Mittag—Leffler function

The Mittag–Leffler function which is introduced by Mittag–Leffler [25] is an entire function
defined as

Eα(z) =
∞∑

k=0

zk

�(αk + 1)
, (6)

where (z ∈ C; �[α] > 0). Wiman [36], Agarwal [1], Humbert [15], Humbert and Agarwal
[16], etc, investigated a more general Mittag–Leffler function defined by the following series:

Eα,β(z) =
∞∑

k=0

zk

�(αk + β)
, (7)
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where z, β ∈ C; �[α] > 0. The Mittag–Leffler function (7) is an entire function of order
ρ = 1/�[α] and type 1. Note that Eα,1(z) = Eα(z). The Mittag–Leffler function is a
generalization of the exponential, hyperbolic and trigonometric functions since E1,1(z) = ez,
E2,1(z

2) = cosh(z), E2,1(−z2) = cos(z) and E2,2(−z2) = sin(z)/z. For the Mittag–Leffler
functions the following formula is true [7]:∫ x

0
tα−1Eα,α(−atα)(x − t)β−1Eα,β(−b(x − t)α) dt

= Eα,β(−bxα) − Eα,β(−axα)

a − b
xβ−1 (a �= b). (8)

The following Laplace transform formula, which includes the Mittag–Leffler function
(7), is very important for solving fractional differential equations [29, 30]:

L[tβ−1Eα,β(±atα)] =
∫ ∞

0
e−st tβ−1Eα,β(±atα) dt = sα−β

sα ∓ a
, (9)

where �[s] > |a|1/α . Some computations of the Mittag–Leffler function are given by Hilfer
and Seybold in the complex plane [14].

2.2. Fractional integral operator

The fractional integral of order γ > 0 is defined as

J γ f (t) = 1

�(γ )

∫ t

0
(t − τ)γ−1f (τ) dτ, t > 0, (10)

where J γ is the so-called fractional integral operator. To complete the definition (10), it is
used that J 0f (t) = f (t). The integral operator (10) is closely connected with the Caputo
time fractional differential operator (4). From the definition of the fractional integral (10) it
follows that [28]

J γ J δ = J γ +δ = J δJ γ (semi-group property) (11)

J γ ts = �(s + 1)

�(s + 1 + γ )
ts+γ , γ � 0, s > −1, t > 0 (12)

and ([17], p 78)

(J γ tβ−1Eμ,β(λtμ))(x) = xγ +β−1Eμ,γ +β(λxμ)

(λ ∈ C,�[γ ] > 0,�[β] > 0,�[μ] � 0). (13)

Recently Srivastava and Tomovski introduced an integral operator
(
Eω;γ,κ

a+;α,βϕ
)
(x) defined

as [33] (
Eω;γ,κ

a+;α,βϕ
)
(x) =

∫ x

a

(x − t)β−1E
γ,κ

α,β (ω(x − t)α)ϕ(t) dt. (14)

In relation (14), E
γ,κ

α,β (z) is the generalized Mittag–Leffler function which has the following
form:

E
γ,κ

α,β (z) =
∞∑

n=0

(γ )κn

�(αn + β)
· zn

n!
, (15)

where z, β, γ ∈ C; �[α] > max{0,�[κ] − 1}; �[κ] > 0 and (γ )κn is a notation of the
Pochhammer symbol. In the case when ω = 0, the integral operator (14) would correspond to
the integral operator (10). Srivastava and Tomovski gave some compositional properties for
E

γ,κ

α,β (z) and solved some linear and nonlinear fractional differential equations. The Mittag–

Leffler function E
γ

α,β(z) is a special case of the function (15) for which E
γ,1
α,β(z) = E

γ

α,β(z)

([17], p 45) is satisfied. Note that E
1,1
α,β(z) = Eα,β(z).
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2.3. Fractional differential operator

From relation (4), it can be easily shown that D
γ
∗ 1 ≡ 0, γ > 0. The Laplace transform for the

Caputo time fractional differential operator is given by the following formula [30]:

L[Dγ
∗ f (t)] =

∫ ∞

0
e−stDγ

∗ f (t) dt = sγ F (s) −
m−1∑
k=0

f (k)(0+)sγ−1−k (m − 1 < γ � m),

(16)

where F(s) is the Laplace transform of the function f (t).

3. Solution of the general time fractional wave equation for a vibrating string

The partial differential equation

∂2u(x, t)

∂t2
= a2 ∂2u(x, t)

x2
(17)

represents a simple wave equation for an elastic string with the constant mass density ρ. Here
a =√

T
ρ
, and T is a constant string tension. This wave equation is followed by boundary

conditions that can be expressed in different forms, and initial conditions u(x, 0) and ∂u(x,0)

∂t
,

which represent the initial shape of the string and the initial velocity of the string, respectively.
For example, the boundary conditions can be expressed as u(0, t) = 0 and u(l, t) = 0 which
means that the ends of the elastic string are fixed. Additional terms can be added to this
equation, such as external force which depends on x and t, or mass density which depends on
the coordinate x, etc. Many authors have investigated this problem taking the time fractional
differential operator instead of the integer order differential operator.

Equation (1) with the boundary conditions (2) and initial conditions (3) is very general
and many problems that are already studied are special cases of it. For example, the considered
problems in [2, 26] can be obtained if we substitute 0 < α � 1, r(x) = 1, p(x) = 1, q(x) = 0,
f (x, t) = 0, a1 = a2 = 1, b1 = b2 = 0, h1(t) = h2(t) = 0 and g0(x) = f (x) in relations
(1), (2) and (3). The equation in [38] is similar to those in [2] and [26] with a difference
that p(x) = const and f (x) = x(1 − x) is used. The equation in [4] is a special case of
equation (1) and can be obtained if 0 < α � 1, r(x) = 1, p(x) = 1, q(x) = 0, f (x, t) = 0,
a1 = a2 = 1, b1 = b2 = 0, h1(t) = ϕ(t), h2(t) = ψ(t) and g0(x) = w(x), and 1 < α � 2,
r(x) = 1, p(x) = 1, q(x) = 0, f (x, t) = 0, a1 = a2 = 1, b1 = b2 = 0, h1(t) = h2(t) = 0,
g0(x) = f (x) and g1(x) = 0 in [6] are used. The results from this paper are in fact contained
in the following theorem.

Theorem 1. The general time fractional wave equation for a vibrating string of form (1)
with boundary conditions (2) and initial conditions (3) in the case when 1 < α � 2 has a
summable solution in the space L(0,∞) with respect to t:

u(x, t) =
∞∑

n=1

an(t)Xn(x) +
∞∑

n=1

(
E−λn;1,1

0+;α,α f̃n

)
(t)Xn(x) + v(x, t), (18)

where x ∈ [0, l],

v(x, t) = a2x − b2 − a2l

a2b1 − a1b2 − a1a2l
h1(t) +

b1 − a1x

a2b1 − a1b2 − a1a2l
h2(t), (19)

an(t) = T (0)
n (0+)Eα(−λnt

α) + T (1)
n (0+)tEα,2(−λnt

α), (20)
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λn and Xn(x) ∈ L2[0, l] for n = 1, 2, . . . are eigenvalues and eigenfunctions of the problem,
respectively,

T (k)
n (0+) = 1

‖Xn(x)‖2

∫ l

0

[
gk(x) − ∂kv(x, 0+)

∂tk

]
Xn(x) dx, (21)

for k = 0, 1,

f̃n(t) = 1

‖Xn(x)‖2

∫ l

0
f̃ (x, t)Xn(x) dx (22)

and

f̃ (x, t) = f (x, t) +
∂

∂x

[
p(x)

∂v(x, t)

∂x

]
− q(x)v(x, t) − r(x)Dα

∗ v(x, t). (23)

Proof. To solve equation (1) with the boundary conditions (2) and initial conditions (3), we
represent the function u(x, t) in the form

u(x, t) = U(x, t) + v(x, t). (24)

The function v(x, t) is chosen to satisfy the boundary conditions (2) of equation (1):[
b1

∂v(x, t)

∂x
+ a1v(x, t)

] ∣∣∣∣
x=0

= h1(t),

[
b2

∂v(x, t)

∂x
+ a2v(x, t)

] ∣∣∣∣
x=l

= h2(t). (25)

It can be easily obtained that the function v(x, t) has the from (19). From relations (25) and
(24) for the function U(x, t) one obtains[

b1
∂U(x, t)

∂x
+ a1U(x, t)

] ∣∣∣∣
x=0

= 0,

[
b2

∂U(x, t)

∂x
+ a2U(x, t)

] ∣∣∣∣
x=l

= 0. (26)

From the initial conditions (3) and by using relation (24) it can be obtained that

∂kU(x, t)

∂tk

∣∣∣∣
t=0+

= gk(x) − ∂kv(x, t)

∂tk

∣∣∣∣
t=0+

= g̃k(x) (27)

for k = 0, 1, . . . , m − 1 and m − 1 < α � m.
By using the substitution

U(x, t) = U1(x, t) + U2(x, t) (28)

from relations (1), (24) and (28), it follows that

r(x)Dα
∗ [U1(x, t) + U2(x, t)] =

{
∂

∂x

[
p(x)

∂

∂x

]
− q(x)

}
[U1(x, t) + U2(x, t)] + f̃ (x, t),

(29)

where f̃ (x, t) is given by (23).
The functions in relation (29) can be separated in the following way:

r(x)Dα
∗ U1(x, t) =

{
∂

∂x

[
p(x)

∂

∂x

]
− q(x)

}
U1(x, t), (30)[

b1
∂U1(x, t)

∂x
+ a1U1(x, t)

] ∣∣∣∣
x=0

= 0,

[
b2

∂U1(x, t)

∂x
+ a2U1(x, t)

] ∣∣∣∣
x=l

= 0 (31)

∂kU1(x, t)

∂tk

∣∣∣∣
t=0+

= g̃k(x) (32)

for k = 0, 1, . . . , m − 1 and m − 1 < α � m and

5



J. Phys. A: Math. Theor. 43 (2010) 055204 T Sandev and Ž Tomovski

r(x)Dα
∗ U2(x, t) =

{
∂

∂x

[
p(x)

∂

∂x

]
− q(x)

}
U2(x, t) + f̃ (x, t), (33)[

b1
∂U2(x, t)

∂x
+ a1U2(x, t)

] ∣∣∣∣
x=0

= 0,

[
b2

∂U2(x, t)

∂x
+ a2U2(x, t)

] ∣∣∣∣
x=l

= 0, (34)

∂kU2(x, t)

∂tk

∣∣∣∣
t=0+

= 0 (35)

for k = 0, 1, . . . , m − 1 and m − 1 < α � m.
By using the method of separation of variables in equation (30) representing the function

U1(x, t) as a product of two functions U1(x, t) = X(x)T (t), one obtains the following
differential equations:

Dα
∗ T (t) + λT (t) = 0, (36){
d

dx

[
p(x)

d

dx

]
− q(x)

}
X(x) + λr(x)X(x) = 0, (37)

where λ is a separation constant. The function X(x) satisfies the following boundary
conditions: [

b1
dX(x)

dx
+ a1X(x)

] ∣∣∣∣
x=0

= 0,

[
b2

dX(x)

dx
+ a2X(x)

] ∣∣∣∣
x=l

= 0. (38)

Equation (37), with the boundary conditions (38), represents the Sturm–Liouville problem
which has a spectrum of eigenvalues λn (λ1 < λ2 < · · · < λn · · ·) and a complete set of
eigenfunctions Xn(x) for which, in the Hilbert space L2[0, l], the following is satisfied:∫ l

0
r(x)X2

n(x) dx = ‖Xn(x)‖2δnm. (39)

In relation (39) r(x) is the weight or density function, ‖Xn‖2 is the norm of the eigenfunction
Xn(x) and δnm is the Kronecker delta. The eigenfunction Xn(x) is called the nth fundamental
solution satisfying the regular Sturm–Liouville problem (37) and (38). It is known that in the
case when q(x) � 0, all the eigenfunctions are positive [35].

Equation (36) can be solved by using relation (16) for the Laplace transform of the Caputo
time fractional differential operator (4). Thus, one obtains

sαL[Tn(t)] −
m−1∑
k=0

T (k)
n (0+)sα−1−k + λnL[Tn(t)] = 0, (40)

from where it is obtained that

L[Tn(t)] =
m−1∑
k=0

T (k)
n (0+)

sα−1−k

sα + λn

. (41)

From relation (41) and by using relation (9) the solution in terms of the Mittag–Leffler
function (7)

Tn(t) =
m−1∑
k=0

T (k)
n (0+)tkEα,k+1(−λnt

α) (42)

is obtained, where T (k)
n (0+) for k = 0, 1 are given by (21). So the solution of equation (30) is

given by

U1(x, t) =
∞∑

n=1

(
m−1∑
k=0

T (k)
n (0+)tkEα,k+1(−λnt

α)

)
Xn(x). (43)

6
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This sum represents the solution of the problem of free oscillations of a vibrating string
with non-zero initial conditions. It is a generalized Fourier expansion of the function U1(x, t)

by using the set of eigenfunctions Xn(x) as a basis. Since the function U1(x, t) satisfies same
boundary conditions as those of the eigenfunctions Xn(x), and if we suppose that ∂U1(x,t)

∂x
is

continuous, then expansion (43) converges absolutely and uniformly in the interval [0, l] to
the function U1(x, t) [35].

The solution of equation (33) can be found by using the complete set of eigenfunctions
Xn(x):

U2(x, t) =
∞∑

n=1

un(t)Xn(x). (44)

Also, this sum converges absolutely and uniformly in the interval [0, l] to the function U2(x, t)

since we suppose that ∂U2(x,t)

∂x
is continuous, and U2(x, t) satisfies the same boundary conditions

as those of the eigenfunctions Xn(x).
Let us expand the function f̃ (x, t) in the following form:

f̃ (x, t) =
∞∑

n=1

f̃n(t)r(x)Xn(x), (45)

where f̃n(t) is given by (22). By using relations (44)–(45), (22) and (33), one obtains
∞∑

n=1

[Dα
∗ un(t) + λnun(t) − f̃n(t)]r(x)Xn(x) = 0, (46)

which is satisfied if

Dα
∗ un(t) + λnun(t) − f̃n(t) = 0. (47)

By applying the Laplace transform method to equation (47) one obtains

sαL[un(t)] −
m−1∑
k=0

u(k)
n (0+)sα−1−k + λnL[un(t)] − L[f̃n(t)] = 0. (48)

From the conditions (35) it follows that ∂kun(x,t)

∂tk
|t=0+ = 0 for k = 0, 1, . . . , m − 1 and

m − 1 < α � m. Thus, from (48) it follows that

L[un(t)] = 1

sα + λn

L[f̃n(t)] = L[tα−1Eα,α(−λnt
α)]L[f̃n(t)]. (49)

From relation (49) it can be noticed that un(t) is a convolution of two functions, i.e.

un(t) =
∫ t

0
(t − τ)α−1Eα,α(−λn(t − τ)α)f̃n(τ ) dτ. (50)

So, the solution of equation (33) in terms of the Mittag–Leffler function is

U2(x, t) =
∞∑

n=1

[∫ t

0
(t − τ)α−1Eα,α(−λn(t − τ)α)f̃n(τ ) dτ

]
Xn(x). (51)

Solution (51) can be expressed by using the integral operator (14). So it becomes

U2(x, t) =
∞∑

n=1

(
E−λn;1,1

0+;α,α f̃n

)
(t)Xn(x). (52)

This sum represents the oscillations of the vibrating string in the presence of an external force
and zero initial conditions.

7
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Finally, in the case when 1 < α � 2, by using relations (24), (28), (43) and (52), we
get (18) which finishes the proof of theorem 1. Note that if we put α = 2 in equation (1) we
obtain the general integer order wave equation for a vibrating string [35]. From solution (18),
by appropriate substitution of the functions and coefficients from relations (1), (2) and (3), the
results obtained in [2, 4, 6, 26, 38] are easily followed. �

Corollary 1. The time fractional partial differential equation

Dα
∗ u(x, t) = a2 ∂2u(x, t)

∂x2
+ b sin x, (53)

with boundary conditions

u(x, t)|x=0 = 0, u(x, t)|x=l = 0 (54)

and initial conditions
∂u(x, t)

∂t

∣∣∣∣
t=0+

= 0, u(x, 0+) = g(x), (55)

where 1 < α < 2, 0 � x � l, b is a constant, has a solution of the form

u(x, t) =
∞∑

n=1

cnEα

(
−n2π2a2

l2
tα

)
sin

(nπx

l

)
+ 2bπ sin l

∞∑
n=1

(−1)nn

l2 − n2π2
tαEα,α+1

(
−n2π2a2

l2
tα

)
sin

(nπx

l

)
, (56)

where cn is the Fourier coefficient given by

cn = 2

l

∫ l

0
g(x) sin

(nπx

l

)
dx. (57)

Proof. This equation is a special case of equation (1) where f (x, t) = b sin x, r(x) = 1,
p(x) = a2, q(x) = 0, h1(t) = h2(t) = 0, a1 = a2 = 1 and b1 = b2 = 0. By substituting
these values in solution (43) we obtain the first term of the relation (56). From relations
(18)–(23) one obtains

fn(t) = 2

l

∫ l

0
sin x sin

(nπx

l

)
dx = 2π sin l

(−1)nn

l2 − n2π2
, (58)

from where for the solution U2(x, t) it follows that

U2(x, t) =
∞∑

n=1

2bπ sin l
(−1)nn

l2 − n2π2
sin

(nπx

l

) ∫ t

0
τα−1Eα,α

(
−n2π2a2

l2
τα

)
dτ. (59)

By substituting relation (13) (γ = 1) in relation (59) we obtain solution (56). �

Corollary 2. The time fractional partial differential equation

Dα
∗ u(x, t) = a2 ∂2u(x, t)

∂x2
, (60)

with boundary conditions

u(x, t)|x=0 = 0, u(x, t)|x=l = 0 (61)

and initial conditions
∂u(x, t)

∂t

∣∣∣∣
t=0+

= 0, u(x, 0+) = g(x), (62)
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where 1 < α < 2 and 0 � x � l has a solution of the form

u(x, t) =
∞∑

n=1

cnEα

(
−n2π2a2

l2
tα

)
sin

(nπx

l

)
, (63)

where cn is given by relation (57).

Proof. This equation is a special case of equation (53) where b = 0, so solution (63) is
directly obtained from solution (56).

Note that for α = 2, solution (63) has the following well-known form:

u(x, t) =
∞∑

n=1

cn cos

(
nπat

l

)
sin

(nπx

l

)
. (64)

�

Corollary 3. The ftime fractional partial differential equation

Dα
∗ u(x, t) = ∂2u(x, t)

∂x2
+ ctγ−1Eα,γ (−btα), (65)

with boundary conditions

u(x, t)|x=0 = 0, u(x, t)|x=l = 0 (66)

and initial conditions

∂u(x, t)

∂t

∣∣∣∣
t=0+

= 0, u(x, 0+) = g(x), (67)

where 1 < α < 2, 0 � x � l, 1 < γ < 2, b and c are constants, has a solution of the form

u(x, t) =
∞∑

n=1

cnEα

(
−n2π2

l2
tα

)
sin

(nπx

l

)
+

+ 2ctγ−1
∞∑

n=1

1 − (−1)n

nπ
· Eα,γ (−btα) − Eα,γ

(− n2π2

l2 tα
)

n2π2

l2 − b
sin

(nπx

l

)
. (68)

Proof. This equation is a special case of equation (1) where f (x, t) = ctγ−1Eα,γ (−btα),
r(x) = 1, p(x) = 1, q(x) = 0, h1(t) = h2(t) = 0, a1 = a2 = 1 and b1 = b2 = 0. The first
term of relation (68) is the same as the first term of the solution in corollary 1. From relations
(18)–(23) one obtains

fn(t) = 2

l

∫ l

0
ctγ−1Eα,γ (−btα) sin

(nπx

l

)
dx = 2 [1 − (−1)n]

nπ
ctγ−1Eα,γ (−btα). (69)

Thus, for the solution U2(x, t) it follows that

U2(x, t) =
∞∑

n=1

2[1 − (−1)n]

nπ
cIα,γ,b,n(t) sin

(nπx

l

)
, (70)

where the integral Iα,γ,b,n(t) is given by

Iα,γ,b,n(t) =
∫ t

0
τα−1Eα,α(−λnτ

α)(t − τ)γ−1Eα,γ (−b(t − τ)α) dτ. (71)

Using relation (8) with a = λn, β = γ we get

Iα,γ,b,n(t) = tγ−1 Eα,γ (−btα) − Eα,γ (−λnt
α)

λn − b
. (72)

9
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Figure 1. Graphical representation of solution (78) for a = 1.

(This figure is in colour only in the electronic version)

Thus, equation (70) becomes

U2(x, t) = 2ctγ−1
∞∑

n=1

1 − (−1)n

nπ
· Eα,γ (−btα) − Eα,γ (−λnt

α)

λn − b
sin

(nπx

l

)
, (73)

from where solution (68) follows. �

Note that the external force f (x, t) = ctγ−1Eα,γ (−btα) goes to zero for t → 0 since
γ > 1. On the other side by using the asymptotic behavior of the Mittag–Leffler function
Eα,β(τ ) ∼ − τ−1

�(β−α)
for τ → ∞ [18] the external force shows the behavior c

b�(γ−α)
t−α+γ−1

which goes to zero since α − γ + 1 > 0. From solution (68) it can be concluded that in the
long time limit (t → ∞) a power-law decay can also be shown.

Example 1. It can be easily shown, by using solution (63), that following time fractional
partial differential equation

Dα
∗ u(x, t) = a2 ∂2u(x, t)

∂x2
, (74)

u(x, t)|x=0 = 0, u(x, t)|x=2 = 0, (75)

∂u(x, t)

∂t

∣∣∣∣
t=0+

= 0, u(x, 0+) = 0.03 · x(2 − x), (76)

where 1 < α � 2 and 0 � x � 2, has a solution of the form

u(x, t) = 0.96

π3

∞∑
n=1

1

(2n − 1)3
Eα

[
− (2n − 1)2π2a2

4
tα

]
sin

[
(2n − 1)πx

2

]
. (77)

Note that in the case when α = 2, solution (77) has the following form [32]:

u(x, t) = 0.96

π3

∞∑
n=1

1

(2n − 1)3
cos

[
(2n − 1)πa

2
t

]
sin

[
(2n − 1)πx

2

]
. (78)

Solution (78) for a = 1 is given in figure 1.

Remark 1. Solution (18) is also applicable to the differential equation of form (60) for
0 < α � 1, boundary conditions u(x, t)|x=0 = 0 and u(x, t)|x=l = 0, and an initial condition

10
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u(x, 0+) = g(x). This equation represents a time fractional diffusion (or heat conduction)
differential equation, and in cases where α = 1 one obtains the well-known result

u(x, t) =
∞∑

n=1

cn e− n2π2a2

l2
t sin

(nπx

l

)
, (79)

where cn is given by (57).

4. Conclusion

We investigate an exact solution of a general time fractional wave equation for a vibrating
string. The solution of the equation is expressed in terms of the Mittag–Leffler-type functions,
integral operator (14) and complete set of eigenfunctions of the Sturm–Liouville problem. It
is shown that equation (1) is a generalization of the general wave equation for a vibrating
string, whose solution follows from theorem 1 for α = 2. Some special cases of equation (1)
are considered and it is shown that the corresponding solution of integer order equations are
special cases of the time fractional equations.
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